Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605423

RESUMO

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Peixe-Zebra , Regulação para Baixo , Camundongos Nus , Proteômica , Metabolismo Energético , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Nat Commun ; 15(1): 1897, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429282

RESUMO

Kidney filtration is ensured by the interaction of podocytes, endothelial and mesangial cells. Immunoglobulin accumulation at the filtration barrier is pathognomonic for glomerular injury. The mechanisms that regulate filter permeability are unknown. Here, we identify a pivotal role for the proteasome in a specific cell type. Combining genetic and inhibitor-based human, pig, mouse, and Drosophila models we demonstrate that the proteasome maintains filtration barrier integrity, with podocytes requiring the constitutive and glomerular endothelial cells the immunoproteasomal activity. Endothelial immunoproteasome deficiency as well as proteasome inhibition disrupt the filtration barrier in mice, resulting in pathologic immunoglobulin deposition. Mechanistically, we observe reduced endocytic activity, which leads to altered membrane recycling and endocytic receptor turnover. This work expands the concept of the (immuno)proteasome as a control protease orchestrating protein degradation and antigen presentation and endocytosis, providing new therapeutic targets to treat disease-associated glomerular protein accumulations.


Assuntos
Nefropatias , Complexo de Endopeptidases do Proteassoma , Camundongos , Humanos , Animais , Suínos , Células Endoteliais , Glomérulos Renais/patologia , Nefropatias/patologia , Endocitose , Imunoglobulinas
4.
Nat Commun ; 14(1): 2114, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055432

RESUMO

Little is known about the mechanistic significance of the ubiquitin proteasome system (UPS) in a kidney autoimmune environment. In membranous nephropathy (MN), autoantibodies target podocytes of the glomerular filter resulting in proteinuria. Converging biochemical, structural, mouse pathomechanistic, and clinical information we report that the deubiquitinase Ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced by oxidative stress in podocytes and is directly involved in proteasome substrate accumulation. Mechanistically, this toxic gain-of-function is mediated by non-functional UCH-L1, which interacts with and thereby impairs proteasomes. In experimental MN, UCH-L1 becomes non-functional and MN patients with poor outcome exhibit autoantibodies with preferential reactivity to non-functional UCH-L1. Podocyte-specific deletion of UCH-L1 protects from experimental MN, whereas overexpression of non-functional UCH-L1 impairs podocyte proteostasis and drives injury in mice. In conclusion, the UPS is pathomechanistically linked to podocyte disease by aberrant proteasomal interactions of non-functional UCH-L1.


Assuntos
Glomerulonefrite Membranosa , Podócitos , Animais , Camundongos , Glomerulonefrite Membranosa/genética , Glomérulos Renais , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Ubiquitina Tiolesterase/genética
6.
J Am Soc Nephrol ; 34(3): 369-373, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735391

RESUMO

SIGNIFICANCE STATEMENT: Membranous nephropathy (MN) is an autoimmune kidney disease characterized by immune deposits in the glomerular basement membrane. Circulating anti-phospholipase A 2 receptor 1 (PLA 2 R1) antibodies are detectable in 70%-80% of patients with MN, but experimental evidence of pathogenicity has been lacking. This study demonstrates the pathogenicity of human anti-PLA 2 R1 antibodies in minipigs, a model for MN that intrinsically expresses PLA 2 R1 on podocytes. After passive transfer of human anti-PLA 2 R1 antibody-containing plasma from patients with PLA 2 R1-associated MN to minipigs, antibodies were detected in the minipig glomeruli, but not in response to plasma from healthy controls. The minipigs developed histomorphological characteristics of MN, local complement activation in the glomeruli, and low-level proteinuria within 7 days, showing that human anti-PLA 2 R1 antibodies are pathogenic. BACKGROUND: Primary membranous nephropathy (MN) is an autoimmune kidney disease in which immune complexes are deposited beneath the epithelium in the glomeruli. The condition introduces a high risk for end-stage kidney disease. Seventy percent to 80% of patients with MN have circulating antibodies against phospholipase A 2 receptor 1 (PLA 2 R1), and levels correlate with treatment response and prognosis. However, experimental evidence that human anti-PLA 2 R1 antibodies induce MN has been elusive. METHODS: In passive transfer experiments, minipigs received plasma or purified IgG from patients with PLA 2 R1-associated MN or from healthy controls. Anti-PLA 2 R1 antibodies and proteinuria were monitored using Western blot, ELISA, and Coomassie staining. Kidney tissues were analyzed using immunohistochemistry, immunofluorescence, electron microscopy, and proteomic analyses. RESULTS: Minipigs, like humans, express PLA 2 R1 on podocytes. Human anti-PLA 2 R1 antibodies bound to minipig PLA 2 R1 in vitro and in vivo . Passive transfer of human anti-PLA 2 R1 antibodies from patients with PLA 2 R1-associated MN to minipigs led to histological characteristics of human early-stage MN, activation of components of the complement cascade, and low levels of proteinuria. We observed development of an autologous, later phase of disease. CONCLUSIONS: A translational approach from humans to minipigs showed that human anti-PLA 2 R1 antibodies are pathogenic in MN, although in the heterologous phase of disease only low-level proteinuria developed.


Assuntos
Doenças Autoimunes , Glomerulonefrite Membranosa , Humanos , Animais , Suínos , Porco Miniatura/metabolismo , Projetos Piloto , Virulência , Proteômica , Autoanticorpos , Proteinúria , Receptores da Fosfolipase A2
7.
Front Cell Neurosci ; 16: 862918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003141

RESUMO

Neuropathologically, Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta peptide (Aß) and subsequent formation of the so-called Aß plaques. Along with neuronal loss, previous studies report white matter anomalies and corpus callosum (CC) atrophy in AD patients. Notably, perturbations in the white matter can be observed years before expected disease onset, suggesting that early stages of disease progression play a role in AD-associated loss of myelin integrity. Through seed-induced deposition of Aß, we are able to examine alterations of central nervous system (CNS) integrity during the initial stages of plaque formation. In this study, we investigate the impact of Aß seeding in the CC utilizing various imaging techniques as well as quantitative gene expression analysis and demonstrate that Aß deposits result in an imbalance of glial cells in the CC. We found increased amounts of phagocytic microglia and reactive astrocytes, while oligodendrocyte progenitor cell (OPC) numbers were reduced. Moreover, white matter aberrations adjacent to the Aß seeding were observed together with an overall decline in callosal myelination. This data indicate that the initial stages of plaque formation induce oligodendrocyte dysfunction, which might ultimately lead to myelin loss.

8.
Mol Psychiatry ; 27(10): 4274-4284, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35869271

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) which ultimately forms plaques. These Aß deposits can be induced in APP transgenic mouse models by prion-like seeding. It has been widely accepted that anosmia and hyposmia occur during the early stages of AD, even before cognitive deficits are present. In order to determine the impact of seed-induced Aß deposits on olfaction, we performed intracerebral injections of seed-competent brain homogenate into the olfactory bulb of young pre-depositing APP transgenic mice. Remarkably, we observed a dramatic olfactory impairment in those mice. Furthermore, the number of newborn neurons as well as the activity of cells in the mitral cell layer was decreased. Notably, exposure to an enriched environment reduced Aß seeding, vivified neurogenesis and most importantly reversed olfactory deficits. Based on our findings, we conclude that altered neuronal function as a result of induced Aß pathology might contribute to olfactory dysfunction in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Olfato , Peptídeos beta-Amiloides , Camundongos Transgênicos , Modelos Animais de Doenças , Neurônios/patologia , Precursor de Proteína beta-Amiloide/genética
9.
Biomedicines ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203480

RESUMO

Vascularization plays an important role in the microenvironment of the tumor. Therefore, it should be a key element to be considered in the development of in vitro cancer assays. In this study, we decellularized in vitro capillaries to remove genetic material and optimized the medium used to increase the robustness and versatility of applications. The growth pattern and drug responses of cancer cell lines and patient-derived primary cells were studied on decellularized capillaries. Interestingly, two distinct growth patterns were seen when cancer cells were grown on decellularized capillaries: "network" and "cluster". Network formation correlated with the metastatic properties of the cells and cluster formation was observed in non-metastatic cells. Drug responses of patient-derived cells correlated better with clinical findings when cells were cultured on decellularized capillaries compared with those cultured on plastic. Decellularized capillaries provide a novel method for cancer cell culture applications. It bridges the gap between complex 3D culture methods and traditional 2D culture methods by providing the ease and robustness of 2D culture as well as an in vivo-like microenvironment and scaffolding for 3D cultures.

10.
Brain Pathol ; 32(3): e13032, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34713522

RESUMO

Several degenerative brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the simultaneous appearance of amyloid-ß (Aß) and α-synuclein (α-syn) pathologies and symptoms that are similar, making it difficult to differentiate between these diseases. Until now, an accurate diagnosis can only be made by postmortem analysis. Furthermore, the role of α-syn in Aß aggregation and the arising characteristic olfactory impairments observed during the progression of these diseases is still not well understood. Therefore, we assessed Aß load in olfactory bulbs of APP-transgenic mice expressing APP695KM670/671NL and PSEN1L166P under the control of the neuron-specific Thy-1 promoter (referred to here as APPPS1) and APPPS1 mice co-expressing SNCAA30P (referred to here as APPPS1 × [A30P]aSYN). Furthermore, the olfactory capacity of these mice was evaluated in the buried food and olfactory avoidance test. Our results demonstrate an age-dependent increase in Aß load in the olfactory bulb of APP-transgenic mice that go along with exacerbated olfactory performance. Our study provides clear evidence that the presence of α-syn significantly diminished the endogenous and seed-induced Aß deposits and significantly ameliorated olfactory dysfunction in APPPS1 × [A30P]aSYN mice.


Assuntos
Doença de Alzheimer , Sinucleinopatias , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
11.
Ann Neurol ; 90(5): 789-807, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34476836

RESUMO

OBJECTIVE: Parkinson's disease (PD) manifests in motor dysfunction, non-motor symptoms, and eventual dementia (PDD). Neuropathological hallmarks include nigrostriatal neurodegeneration, Lewy body (LB) pathology, and neuroinflammation. Alpha-synuclein (α-syn), a primary component of LBs, is implicated in PD pathogenesis, accumulating, and aggregating in both familial and sporadic PD. However, as α-syn pathology is often comorbid with amyloid-beta (Aß) plaques and phosphorylated tau (pTau) tangles in PDD, it is still unclear whether α-syn is the primary cause of neurodegeneration in sporadic PDD. We aimed to determine how the absence of α-syn would affect PDD manifestation. METHODS: IFN-ß knockout (Ifnb-/- ) mice spontaneously develop progressive behavior abnormalities and neuropathology resembling PDD, notably with α-syn+ LBs. We generated Ifnb/Snca double knockout (DKO) mice and evaluated their behavior and neuropathology compared with wild-type (Wt), Ifnb-/- , and Snca-/- mice using immunohistochemistry, electron microscopy, immunoblots, qPCR, and modification of neuronal signaling. RESULTS: Ifnb/Snca DKO mice developed all clinical PDD-like behavioral manifestations induced by IFN-ß loss. Independently of α-syn expression, lack of IFN-ß alone induced Aß plaques, pTau tangles, and LB-like Aß+ /pTau+ inclusion bodies and neuroinflammation. IFN-ß loss caused significant elevated glial and neuronal TNF-α and neuronal TNFR1, associated with neurodegeneration. Restoring neuronal IFN-ß signaling or blocking TNFR1 rescued caspase 3/t-BID-mediated neuronal-death through upregulation of c-FLIPS and lowered intraneuronal Aß and pTau accumulation. INTERPRETATION: These findings increase our understanding of PD pathology and suggest that targeting α-syn alone is not sufficient to mitigate disease. Targeting specific aspects of neuroinflammation, such as aberrant neuronal TNF-α/TNFR1 or IFN-ß/IFNAR signaling, may attenuate disease. ANN NEUROL 2021;90:789-807.


Assuntos
Doenças Neuroinflamatórias/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Progressão da Doença , Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Camundongos Knockout , Neuroglia/patologia , Doença de Parkinson/genética , Placa Amiloide/metabolismo , Fator de Necrose Tumoral alfa/deficiência
12.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209696

RESUMO

Up to 40% of advance lung, melanoma and breast cancer patients suffer from brain metastases (BM) with increasing incidence. Here, we assessed whether circulating tumor cells (CTCs) in peripheral blood can serve as a disease surrogate, focusing on CD44 and CD74 expression as prognostic markers for BM. We show that a size-based microfluidic approach in combination with a semi-automated cell recognition system are well suited for CTC detection in BM patients and allow further characterization of tumor cells potentially derived from BM. CTCs were found in 50% (7/14) of breast cancer, 50% (9/18) of non-small cell lung cancer (NSCLC) and 36% (4/11) of melanoma patients. The next-generation sequencing (NGS) analysis of nine single CTCs from one breast cancer patient revealed three different CNV profile groups as well as a resistance causing ERS1 mutation. CD44 and CD74 were expressed on most CTCs and their expression was strongly correlated, whereas matched breast cancer BM tissues were much less frequently expressing CD44 and CD74 (negative in 46% and 54%, respectively). Thus, plasticity of CD44 and CD74 expression during trafficking of CTCs in the circulation might be the result of adaptation strategies.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Antígenos de Histocompatibilidade Classe II/genética , Receptores de Hialuronatos/genética , Células Neoplásicas Circulantes/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Masculino , Mutação , Sequenciamento Completo do Genoma
13.
J Am Soc Nephrol ; 32(9): 2175-2193, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34074698

RESUMO

BACKGROUND: The glomerulus comprises podocytes, mesangial cells, and endothelial cells, which jointly determine glomerular filtration. Understanding this intricate functional unit beyond the transcriptome requires bulk isolation of these cell types for biochemical investigations. We developed a globally applicable tripartite isolation method for murine mesangial and endothelial cells and podocytes (timMEP). METHODS: We separated glomerular cell types from wild-type or mT/mG mice via a novel FACS approach, and validated their purity. Cell type proteomes were compared between strains, ages, and sex. We applied timMEP to the podocyte-targeting, immunologic, THSD7A-associated, model of membranous nephropathy. RESULTS: timMEP enabled protein-biochemical analyses of podocytes, mesangial cells, and endothelial cells derived from reporter-free mice, and allowed for the characterization of podocyte, endothelial, and mesangial proteomes of individual mice. We identified marker proteins for mesangial and endothelial proteins, and outlined protein-based, potential communication networks and phosphorylation patterns. The analysis detected cell type-specific proteome differences between mouse strains and alterations depending on sex, age, and transgene. After exposure to anti-THSD7A antibodies, timMEP resolved a fine-tuned initial stress response, chiefly in podocytes, that could not be detected by bulk glomerular analyses. The combination of proteomics with super-resolution imaging revealed a specific loss of slit diaphragm, but not of other foot process proteins, unraveling a protein-based mechanism of podocyte injury in this animal model. CONCLUSION: timMEP enables glomerular cell type-resolved investigations at the transcriptional and protein-biochemical level in health and disease, while avoiding reporter-based artifacts, paving the way toward the comprehensive and systematic characterization of glomerular cell biology.


Assuntos
Separação Celular/métodos , Glomerulonefrite Membranosa/patologia , Células Mesangiais , Podócitos , Proteoma , Animais , Separação Celular/economia , Modelos Animais de Doenças , Feminino , Glomerulonefrite Membranosa/etiologia , Glomerulonefrite Membranosa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Neuro Oncol ; 22(7): 955-966, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32064501

RESUMO

BACKGROUND: Brain metastasis (BM) in non-small-cell lung cancer (NSCLC) has a very poor prognosis. Recent studies have demonstrated the importance of cell adhesion molecules in tumor metastasis. The aim of our study was to investigate the role of activated leukocyte cell adhesion molecule (ALCAM) in BM formation in NSCLC. METHODS: Immunohistochemical analysis was performed on 143 NSCLC primary tumors and BM. A correlation between clinicopathological parameters and survival was developed. Biological properties of ALCAM were assessed in vitro by gene ablation using CRISPR/Cas9 technology in the NCI-H460 NSCLC cell line and in vivo by intracranial and intracardial cell injection of NCI-H460 cells in NMRI-Foxn1nu/nu mice. RESULTS: ALCAM expression was significantly upregulated in NSCLC brain metastasis (P = 0.023) with a de novo expression of ALCAM in 31.2% of BM. Moderate/strong ALCAM expression in both primary NSCLC and brain metastasis was associated with shortened survival. Functional analysis of an ALCAM knock-out (KO) cell line showed a significantly decreased cell adhesion capacity to human brain endothelial cells by 38% (P = 0.045). In vivo studies showed significantly lower tumor cell dissemination in mice injected with ALCAM-KO cells in both mouse models, and both the number and size of BM were significantly diminished in ALCAM depleted tumors. CONCLUSIONS: Our findings suggest that elevated levels of ALCAM expression promote BM formation in NSCLC through increased tumor cell dissemination and interaction with the brain endothelial cells. Therefore, ALCAM could be targeted to reduce the occurrence of BM. KEY POINTS: 1. ALCAM expression associates with poor prognosis and brain metastasis in NSCLC.2. ALCAM mediates interaction of NSCLC tumor cells with brain vascular endothelium.3. ALCAM might represent a novel preventive target to reduce the occurrence of BM in NSCLC.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Molécula de Adesão de Leucócito Ativado , Animais , Neoplasias Encefálicas/secundário , Células Endoteliais , Endotélio Vascular , Feminino , Humanos , Masculino , Camundongos
15.
Cancers (Basel) ; 12(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069934

RESUMO

Circulating tumor cells (CTCs) are promising tools for risk prediction and the monitoring of response to therapy in cancer patients. Within the EU/IMI CANCER-ID consortium, we validated CTC enrichment systems for future inclusion into clinical trials. Due to the known heterogeneity of markers expressed on CTCs, we tested the Parsortix® system (ANGLE plc) which enables label-independent CTC enrichment from whole blood based on increased size and deformability of these tumor cells compared to leukocytes. We performed extensive comparisons both with spiked-in blood models (i.e., MDA-MB-468 tumor cell line cells spiked at very low concentration into blood from healthy donors) and validated the protocol on actual clinical samples from breast, lung, and gastrointestinal cancer patients to define optimal conditions for CTC enrichment. Multiple parameters including cassette gap, separation pressure, and cell fixatives were compared in parallel. Also, the compatibility of blood collection tubes with whole genome amplification of isolated tumor cells was demonstrated and we furthermore established a workflow for semi-automated CTC detection using a quantitative cell imager. The established workflow will contribute to supporting the use of size-based CTC enrichment platforms in clinical trials testing the clinical validity and utility of CTCs for personalized medicine.

16.
Front Mol Neurosci ; 11: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479305

RESUMO

Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of ß-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.

17.
Cell Rep ; 22(8): 1965-1973, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466725

RESUMO

Spatial relationships between Cav channels and release sensors at active zones (AZs) are a major determinant of synaptic fidelity. They are regulated developmentally, but the underlying molecular mechanisms are largely unclear. Here, we show that Munc13-3 regulates the density of Cav2.1 and Cav2.2 channels, alters the localization of Cav2.1, and is required for the development of tight, nanodomain coupling at parallel-fiber AZs. We combined EGTA application and Ca2+-channel pharmacology in electrophysiological and two-photon Ca2+ imaging experiments with quantitative freeze-fracture immunoelectron microscopy and mathematical modeling. We found that a normally occurring developmental shift from release being dominated by Ca2+ influx through Cav2.1 and Cav2.2 channels with domain overlap and loose coupling (microdomains) to a nanodomain Cav2.1 to sensor coupling is impaired in Munc13-3-deficient synapses. Thus, at AZs lacking Munc13-3, release remained triggered by Cav2.1 and Cav2.2 microdomains, suggesting a critical role of Munc13-3 in the formation of release sites with calcium channel nanodomains.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Nanopartículas/química , Proteínas do Tecido Nervoso/metabolismo , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico
18.
Cell Rep ; 22(1): 36-43, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298431

RESUMO

Inhibition provided by local GABAergic interneurons (INs) activates ionotropic GABAA and metabotropic GABAB receptors (GABABRs). Despite GABABRs representing a major source of inhibition, little is known of their function in distinct IN subtypes. Here, we show that, while the archetypal dendritic-inhibitory somatostatin-expressing INs (SOM-INs) possess high levels of GABABR on their somato-dendritic surface, they fail to produce significant postsynaptic inhibitory currents. Instead, GABABRs selectively inhibit dendritic CaV1.2 (L-type) Ca2+ channels on SOM-IN dendrites, leading to reduced calcium influx and loss of long-term potentiation at excitatory input synapses onto these INs. These data provide a mechanism by which GABABRs can contribute to disinhibition and control the efficacy of extrinsic inputs to hippocampal networks.


Assuntos
Região CA1 Hipocampal/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Interneurônios/metabolismo , Potenciação de Longa Duração/fisiologia , Receptores de GABA-B/metabolismo , Somatostatina/metabolismo , Animais , Região CA1 Hipocampal/citologia , Dendritos/metabolismo , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Interneurônios/citologia , Masculino , Ratos , Ratos Endogâmicos WF , Sinapses/metabolismo
19.
EMBO J ; 37(2): 167-182, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29229786

RESUMO

Alzheimer's disease (AD) is characterized by severe neuronal loss as well as the accumulation of amyloid-ß (Aß), which ultimately leads to plaque formation. Although there is now a general agreement that the aggregation of Aß can be initiated by prion-like seeding, the impact and functional consequences of induced Aß deposits (Aß seeding) on neurons still remain open questions. Here, we find that Aß seeding, representing early stages of plaque formation, leads to a dramatic decrease in proliferation and neurogenesis in two APP transgenic mouse models. We further demonstrate that neuronal cell death occurs primarily in the vicinity of induced Aß deposits culminating in electrophysiological abnormalities. Notably, environmental enrichment and voluntary exercise not only revives adult neurogenesis and reverses memory deficits but, most importantly, prevents Aß seeding by activated, phagocytic microglia cells. Our work expands the current knowledge regarding Aß seeding and the consequences thereof and attributes microglia an important role in diminishing Aß seeding by environmental enrichment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proliferação de Células , Microglia/metabolismo , Fagocitose , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/patologia
20.
Cereb Cortex ; 27(3): 2318-2334, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27073217

RESUMO

Cholecystokinin-expressing interneurons (CCK-INs) mediate behavior state-dependent inhibition in cortical circuits and themselves receive strong GABAergic input. However, it remains unclear to what extent GABAB receptors (GABABRs) contribute to their inhibitory control. Using immunoelectron microscopy, we found that CCK-INs in the rat hippocampus possessed high levels of dendritic GABABRs and KCTD12 auxiliary proteins, whereas postsynaptic effector Kir3 channels were present at lower levels. Consistently, whole-cell recordings revealed slow GABABR-mediated inhibitory postsynaptic currents (IPSCs) in most CCK-INs. In spite of the higher surface density of GABABRs in CCK-INs than in CA1 principal cells, the amplitudes of IPSCs were comparable, suggesting that the expression of Kir3 channels is the limiting factor for the GABABR currents in these INs. Morphological analysis showed that CCK-INs were diverse, comprising perisomatic-targeting basket cells (BCs), as well as dendrite-targeting (DT) interneurons, including a previously undescribed DT type. GABABR-mediated IPSCs in CCK-INs were large in BCs, but small in DT subtypes. In response to prolonged activation, GABABR-mediated currents displayed strong desensitization, which was absent in KCTD12-deficient mice. This study highlights that GABABRs differentially control CCK-IN subtypes, and the kinetics and desensitization of GABABR-mediated currents are modulated by KCTD12 proteins.


Assuntos
Colecistocinina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/metabolismo , Canais de Potássio/metabolismo , Receptores de GABA-A/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Imuno-Histoquímica , Interneurônios/ultraestrutura , Masculino , Microscopia Imunoeletrônica , Técnicas de Patch-Clamp , Ratos Wistar , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...